Complex Numbers Exercises: Solutions

1. write in the form x + iy:
(a). $\frac{1}{2+2i}$

(a).
$$\frac{1}{2+2i}$$

$$\frac{1}{2+2i} = \frac{1}{2+2i} \cdot \frac{2-2i}{2-2i} = \frac{2-2i}{4+4} = \frac{1}{4} - \frac{1}{4}i.$$

(b).
$$\frac{1}{i^3}$$

$$\frac{1}{i^3} = \frac{1}{-i} = \frac{-1}{i} \cdot \frac{i}{i} = \frac{-i}{-1} = i.$$

(c).
$$i(1+i)(1-i)^2$$

$$i(1+i)(1-i)^2 = (i-1)(1-i)^2 = (i-1)(1-2i+i^2) = (i-1)(-2i) = -2i^2 + 2i = 2+2i.$$

2. Write in the polar and the exponential polar form:

(a).
$$\frac{1}{2+2i}$$

(see 1.a.) = $\frac{1}{4} - \frac{1}{4}i$, so, $|z| = \sqrt{\frac{1}{16} + \frac{1}{16}} = \frac{\sqrt{2}}{4} = \frac{1}{4}\sqrt{2}$. From drawing $\frac{1}{4} - \frac{1}{4}i$ we see directly that $\varphi = -\frac{1}{4}\pi$, so

$$\frac{1}{4} - \frac{1}{4}i = \frac{1}{4}\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) = \frac{1}{4}\sqrt{2}e^{-i\frac{\pi}{4}}.$$

(b).
$$-1 + i\sqrt{3}$$

 $|z|=\sqrt{1+3}=2$. By drawing and using an \arctan we find $\varphi=\frac{2}{3}\pi$. So $-1+i\sqrt{3}=2\left(\cos\left(\frac{2}{3}\pi\right)+i\sin\left(\frac{2}{3}\pi\right)\right)=2e^{i\frac{2}{3}\pi}$.

(c).
$$\sqrt{1+i}$$

First look at 1+i: this has modulus $\sqrt{2}$ and argument $\frac{\pi}{4}$, so $1+i=\sqrt{2}e^{i\frac{\pi}{4}}$. Now take the square root:

$$(1+i)^{1/2} = \left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^{1/2} = 2^{\frac{1}{4}}e^{i\frac{\pi}{8}} = \sqrt[4]{2}\left(\cos\left(\frac{\pi}{8}\right) + i\sin\left(\frac{\pi}{8}\right)\right).$$

3. Give all roots (solutions) of $z^2 + z + 1 = 0$.

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 - 4}}{2} = -\frac{1}{2} \pm \frac{1}{2}\sqrt{-3} = -\frac{1}{2} \pm \frac{1}{2}\sqrt{3}i.$$

4. Split into factors: $z^2 + 1$.

Solutions of $z^2 + 1 = 0$ are $z = \pm i$. (You can see this directly from $z^2 = -1$ or by using the quadratric *abc*-formula.) So: $z^2 + 1 = (z - i)(z + i)$.

- **5.** Multiplying a complex z by i is the equivalent of rotating z in the complex plane by $\pi/2$.
- (a). Verify this for z = 2 + 2i
- **(b).** Verify this for z = 4 3i
- (c). Show that $zi \perp z$ for all complex z.

The easiest way is to use linear algebra: set z = x + iy. Then zi = ix - y. This corresponds to the vectors $\begin{pmatrix} x \\ y \end{pmatrix}$ and $\begin{pmatrix} -y \\ x \end{pmatrix}$ in the complex plane respectively. Since the dot product of these vectors is 0, they are perpendicular.

6. Calculate Im $((i + 1)^8 z^2)$ for z = x + iy.

$$i + 1 = \sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right)$$

$$(i + 1)^8 = 2^4 \left(\cos \left(2\pi \right) + i \sin \left(2\pi \right) \right) = 16(1 + i \cdot 0) = 16$$

$$z^2 = x^2 + 2ixy - y^2$$

$$(i + 1)^8 z^2 = 16(x^2 - y^2) + 32ixy$$

$$\operatorname{Im} \left((i + 1)^8 z^2 \right) = 32xy.$$

7. Find an expression for $\sin(3\theta)$ in terms of $\sin(\theta)$, $\cos(\theta)$.

By de Moivre's formula (using shorthands $\cos \theta = c$ and $\sin \theta = s$):

$$(c+is)^3 = \cos(3\theta) + i\sin(3\theta)$$

working out the left side gives:
 $(c+is)(c^2 + 2ics + -s^2) =$
 $c^3 + 2ic^2s - cs^2 + isc^2 - 2cs^2 - is^3 =$
 $(c^3 - cs^2 - 2cs^2) + i(2c^2s + sc^2 - s^3) =$
 $(c^3 - 3cs^2) + i(3c^2s - s^3).$

So $\cos(3\theta) + i\sin(3\theta) = (c^3 - 3cs^2) + i(3c^2s - s^3)$. This equality only holds if both the real and the imaginary parts of the equation hold. In this case, we are only interested in the imaginary part, because this equals $\sin(3\theta)$, so:

$$\sin(3\theta) = 3\cos^2(\theta)\sin(\theta) - \sin^3(\theta).$$

8.(advanced) Solve $z^4 + 16 = 0$ for complex z, then use your answer to factor $z^4 + 16$ into two factors with real coefficients.

Alternative 1: write the equation as $(z^2)^2 + 16 = 0$:

$$\begin{array}{lll} (z^2)^2 = -16 \\ z^2 = 4i & \forall & z^2 = -4i \\ z^2 = 4e^{i\frac{\pi}{2}} & \forall & z^2 = 4e^{i\frac{-\pi}{2}} \\ z = \pm 2e^{i\frac{\pi}{4}} & \forall & z = \pm 2e^{i\frac{-\pi}{4}} \\ z = \pm (2(\frac{1}{2}\sqrt{2} + i\frac{1}{2}\sqrt{2})) & \forall & z = \pm (2(\frac{1}{2}\sqrt{2} - i\frac{1}{2}\sqrt{2})) \\ z = \pm (\sqrt{2} + i\sqrt{2}) & \forall & z = \pm (\sqrt{2} - i\sqrt{2}) \end{array}$$

So

$$z^{4} + 16 = (z - (\sqrt{2} + i\sqrt{2}))(z - (-\sqrt{2} - i\sqrt{2}))(z - (\sqrt{2} - i\sqrt{2}))(z - (-\sqrt{2} + i\sqrt{2})).$$

We can reduce these four factors to two factors by (e.g.) multiplying factors 1&2 and 3&4, but this leads to $z^4 + 16 = (z^2 - 4i)(z^2 + 4i)$, i.e. not with real coefficients. Multiplying factors 1&3 and 2&4 gives the desired answer:

$$z^4 + 16 = (z^2 - 2\sqrt{2}z + 4)(z^2 + 2\sqrt{2}z + 4).$$

Alternative 2:

$$z^4+16=0$$

$$z^4=-16=16(\cos(\pi)+i\sin(\pi))=16e^{i\pi}$$
 more general:
$$z^4=16e^{i(\pi+k2\pi)}$$
 with k integer (this is necessary to find all roots with a valid argument).
$$z=\sqrt[4]{16}e^{i(\frac{\pi}{4}+k\frac{\pi}{2})}$$

$$z=2e^{i(\frac{\pi}{4}+k\frac{\pi}{2})}$$

For valid arguments $(-\pi < \varphi \le \pi)$ this yields $z = 2e^{-\frac{3}{4}\pi}, 2e^{-\frac{1}{4}\pi}, 2e^{\frac{1}{4}\pi}, 2e^{\frac{3}{4}\pi}$, which leads to the same solutions as in alternative 1. (The rest; the factorization is the same as in alternative 1.)